skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fekri, Faramarz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding causal relationships between variables is fundamental across scientific disciplines. Most causal discovery algorithms rely on two key assump- tions: (i) all variables are observed, and (ii) the underlying causal graph is acyclic. While these assumptions simplify theoretical analysis, they are often violated in real-world systems, such as biological networks. Existing methods that account for confounders either assume linearity or struggle with scalability. To address these limitations, we propose DCCD-CONF, a novel framework for differentiable learning of nonlinear cyclic causal graphs in the presence of unmeasured confounders using interventional data. Our approach alternates between optimizing the graph structure and estimating the confounder distribution by maximizing the log-likelihood of the data. Through experiments on synthetic data and real-world gene perturbation datasets, we show that DCCD-CONF outperforms state-of-the-art methods in both causal graph recovery and confounder identification. Additionally, we provide consistency guarantees for our framework, reinforcing its theoretical soundness. 
    more » « less
    Free, publicly-accessible full text available December 4, 2026
  2. Free, publicly-accessible full text available March 4, 2026
  3. In this paper, we consider the parallel implementation of an already-trained deep model on multiple processing nodes (a.k.a. workers). Specifically, we investigate as to how a deep model should be divided into several parallel sub-models, each of which is executed efficiently by a worker. Since latency due to synchronization and data transfer among workers negatively impacts the performance of the parallel implementation, it is desirable to have minimum interdependency among parallel sub-models. To achieve this goal, we propose to rearrange the neurons in the neural network, partition them (without changing the general topology of the neural network), and modify the weights such that the interdependency among sub-models is minimized under the computations and communications constraints of the workers while minimizing its impact on the performance of the model. We propose RePurpose, a layer-wise model restructuring and pruning technique that guarantees the performance of the overall parallelized model. To efficiently apply RePurpose, we propose an approach based on L0 optimization and the Munkres assignment algorithm. We show that, compared to the existing methods, RePurpose significantly improves the efficiency of the distributed inference via parallel implementation, both in terms of communication and computational complexity. 
    more » « less
  4. The actor-critic RL is widely used in various robotic control tasks. By viewing the actor-critic RL from the perspective of variational inference (VI), the policy network is trained to obtain the approximate posterior of actions given the optimality criteria. However, in practice, the actor-critic RL may yield suboptimal policy estimates due to the amortization gap and insufficient exploration. In this work, inspired by the previous use of Hamiltonian Monte Carlo (HMC) in VI, we propose to integrate the policy network of actor-critic RL with HMC, which is termed as Hamiltonian Policy. As such we propose to evolve actions from the base policy according to HMC, and our proposed method has many benefits. First, HMC can improve the policy distribution to better approximate the posterior and hence reduce the amortization gap. Second, HMC can also guide the exploration more to the regions of action spaces with higher Q values, enhancing the exploration efficiency. Further, instead of directly applying HMC into RL, we propose a new leapfrog operator to simulate the Hamiltonian dynamics. Finally, in safe RL problems, we find that the proposed method can not only improve the achieved return, but also reduce safety constraint violations by discarding potentially unsafe actions. With comprehensive empirical experiments on continuous control baselines, including MuJoCo and PyBullet Roboschool, we show that the proposed approach is a data-efficient and easy-to-implement improvement over previous actor-critic methods. 
    more » « less